
Dietary Protein and the Metabolic syndrome

Opportunities for marine ingredients?

<u>Marco Mensink</u>, Wageningen University, the Netherlands Division of Human Nutrition, chair Nutrition and Health

MIC 2013, Oslo, Norway

Metabolic syndrome

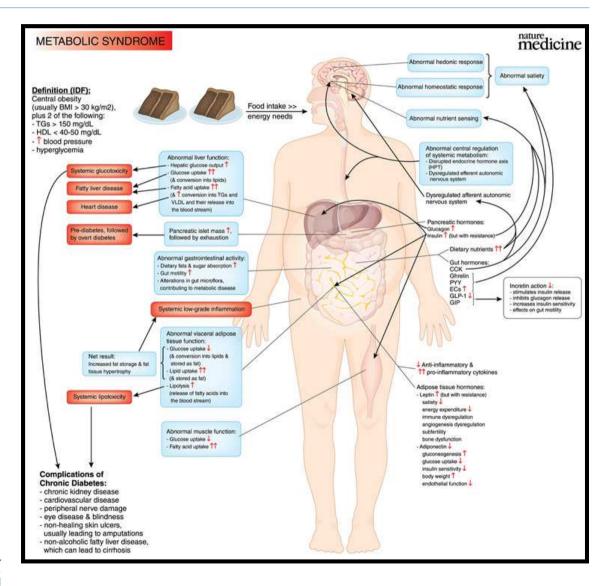
Clustering of risk factors or medical disorders that increases the risk of developing cardiovascular disease or type II diabetes

Definition (IDF):

Central obesity (usually BMI > 30 kg/m2), plus 2 of the following:

- TGs > 150 mg/dL
- HDL < 40-50 mg/dL
- f blood pressure
- hyperglycemia

" syndrome X... ... cardiometabolic syndrome insulin resistance syndrome... ... Reaven's syndrome "


insulin resistance syndrome... ... Reaven's syndrome "

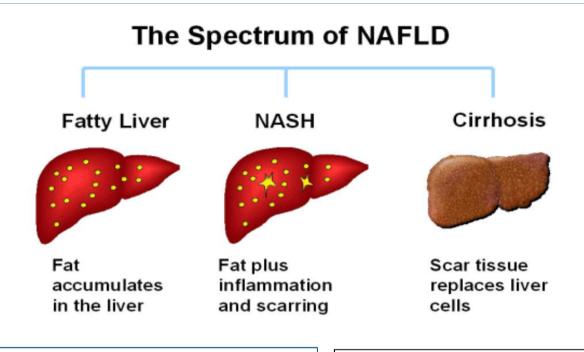
Metabolic syndrome

Insulin resistance

Ectopic fat / lipotoxicity

Ectopic Fat / Lipotoxicity *`when tissues overeat'*

the deposition of triglycerides within cells of nonadipose tissue that normally contain only small amounts of fat


leading to cell dysfunction or cell death.

(Schaffer, Curr Opin Lipidol, 2003)

Intra Hepatic lipids (IHL)

Consequences:

- *Hepatic insulin resistance*
- Decreased insulin clearance
- Disturbed lipid metabolism

High Prevalence

(e.g. 33.6% in the Dallas Heart study; *Szczepaniak, L.S. et al, 2005*)

DIETARY PROTEINS

Dietary Protein & Metabolic Syndrome

Epidemiological data

• Increased risk type 2 diabetes mellitus

Dietary protein intake and incidence of Type 2 Diabetes in Europe:

The EPIC-InterAct Case-Cohort Study.

Van Nielen, M. unpublished data

Dietary Protein & Metabolic Syndrome

- Epidemiological data
 - Increased risk type 2 diabetes mellitus
- BCAA: biomarker associated with DM risk
 - Cross-sectional and prospective
- Infusion amino acids
 - Decrease insulin sensitivity

Dietary Protein & Metabolic Syndrome

Weight-loss, improved weight maintenance

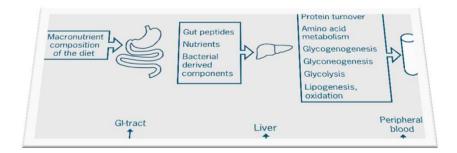
- Preservation lean mass
- Increased satiety
- Increased thermogenesis

Metabolic improvements

- Insulin secretion
- Glucose homeostasis, insulin resistance

Liver metabolism

- Decrease IHL, lower circulating markers of liver dysfunction
- reduced lipogenesis, increased gluconeogenesis and glycogen synthesis (rodent data)

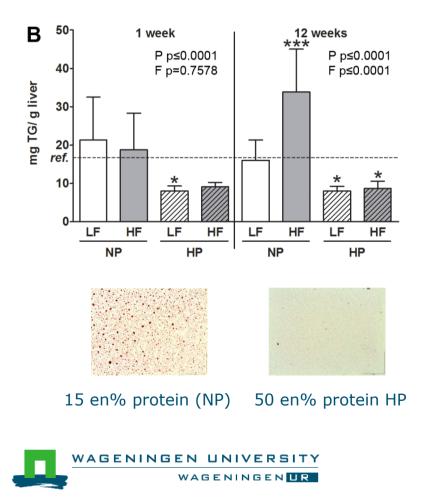


Influence of dietary protein on metabolic phenotype and gene expression in the gut-liver axis

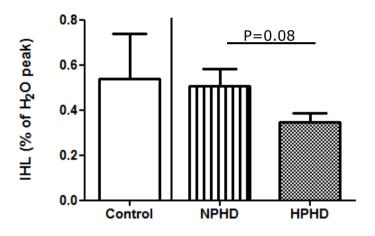
To understand the effects of **increasing protein intake at the expense of carbohydrates**, in a <u>high-fat-*hypercaloric*-diet</u>


- on phenotype adaptation of <u>body composition</u>, <u>intra hepatic</u> <u>lipids</u> and the gut.
- on nutrients homeostasis, <u>risk of metabolic disorders</u> and associated diseases.
- on gene expression in liver, adipose tissue and intestine

Human Research Facilities Division of Human Nutrition



Controlled intervention Dietary Facilities Hepatic steatosis Nutritional Imaging Metabolism *Metabolic Ward*



Protein manipulation modifying phenotype: prevention of fat induced increase in liver fat

Mouse study:

Human study:

Rietman, A. unpublished data Chaumontet, C. unpublished data Schwarz, J. et al., PLoS ONE 2012.

Dietary Protein and IHL

High protein intake reduces intrahepatocellular lipid deposition in humans¹⁻³

Murielle Bortolotti, Roland Kreis, Cyrille Debard, Bertrand Cariou, David Faeh, Maud Chetiveaux, Michael Ith, Peter Vermathen, Nathalie Stefanoni, Kim-Anne Lê, Philippe Schneiter, Michel Krempf, Hubert Vidal, Chris Boesch, and Luc Tappy

HEPATOLOGY

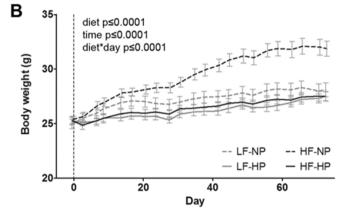
Open-labeled pilot study of cysteine-rich whey protein isolate supplementation for nonalcoholic steatohepatitis patients

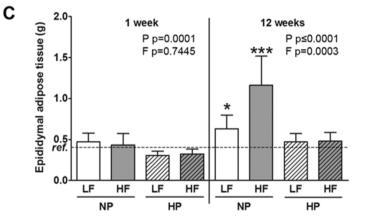
Taned Chitapanarux,* Prasong Tienboon,[†] Suwalee Pojchamarnwiputh[‡] and Donrawee Leelarungrayub[§]

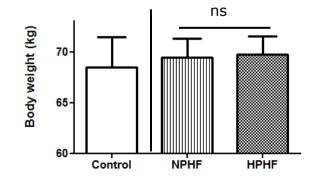
Effects of a whey protein supplementation on intrahepatocellular lipids in obese female patients

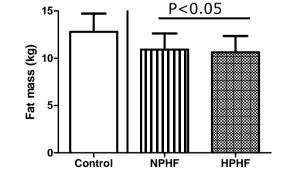
Murielle Bortolotti^{a,d}, Elena Maiolo^{a,d}, Mattia Corazza^{a,d}, Eveline Van Dijke^{a,d}, Philippe Schneiter^{a,e}, Andreas Boss^{b,f}, Guillaume Carrel^{a,e}, Vittorio Giusti^{c,g}, Kim-Anne Lê^{a,h}, Daniel Guae Quo Chong^{b,f}, Tania Buehler^{b,f}, Roland Kreis^{b,f}, Chris Boesch^{b,f}, Luc Tappy^{a,c,*}

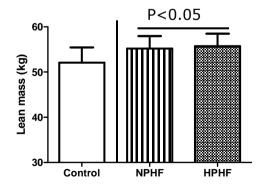
^a Department of Physiology, University of Lausanne, 7, rue du Bugnon, 1005 Lausanne, Switzerland


^bDepartment of Clinical Research/AMSM, University of Bern, Pavilion 52A, Inselspital, P.O. Box 35, 3010 Bern, Switzerland


^c Service of Endocrinology, Diabetes and Metabolism, CHUV, 1011 Lausanne, Switzerland


Protein manipulation modifying phenotype: prevention of increase BW and adipose tissue


Mouse study:

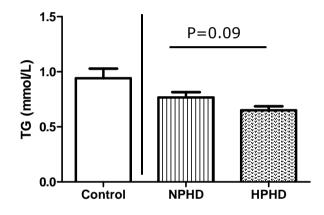


Human study:

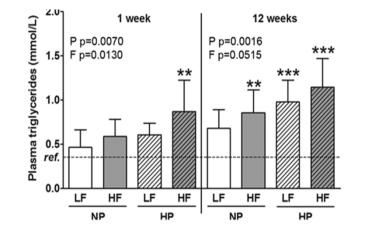
Protein manipulation modifying phenotype: insulin resistance

Human study:

	control 2 weeks	HD	
		NPHF	HPHF
HOMA-IR ² (mmol/L × μ U/ml)	0.91 ± 0.14	0.95 ± 0.14	0.90 ± 0.15
Glucose (mmol/L)	5.07 ± 0.04	5.03 ± 0.08	5.05 ± 0.09
Insulin (µU/L)	4.01 ± 0.62	4.21 ± 0.62	3.95 ± 0.63


Rat study:

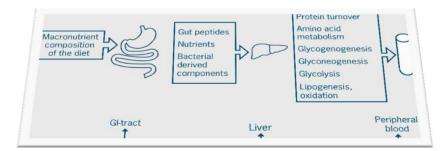
No effect of increasing protein intake on several markers of insulin action and glycemic control



Protein manipulation modifying phenotype: blood lipids

Human study:

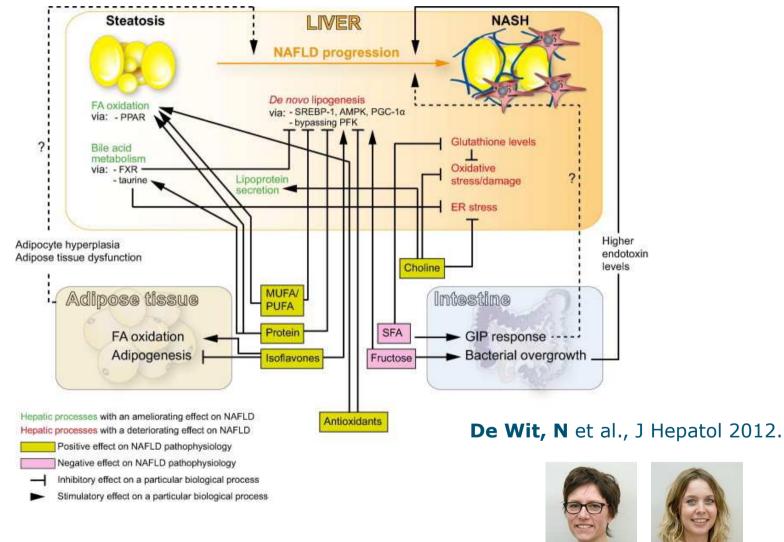
Mouse study:


Rat study: NP HP С HS **HS-HF** С HS **HS-HF** Fasted Triglyceride (mM/l) P (<0.001) 0.9±0.9 1.0±0.4 1.1±0.3 0.6±0.1 0.6±0.1 0.6±0.1 Cholesterol (mM/l) 2.0±0.5 2.1±0.5 NS 1.8±0.2 1.9±0.3 1.8±0.2 1.7±0.5 HDL (mM/I) 1.2±0.1 1.2±0.2 1.2±0.1 1.4±0.3 1.2±0.3 1.4±0.3 P (<0.05)

Conclusions

Impact of high dietary protein on biomarkers of metabolic syndrome when fed a high-fat diet:

- Liver lipids (IHL): reduced
- Central adiposity: reduced
- Lipids
 - Triglycerides: decreased / increased
 - HDL-cholesterol: increased
- Insulin sensitivity:
 - no effect in a young, metabolic flexible population

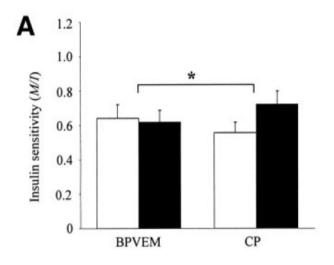


MARINE INGREDIENTS

'Phenotyping the effect of diet on NAFLD'

WAGENINGEN UNIVERSITY WAGENINGEN UR

Fish and NAFLD


Fish oil

- consumption of <u>n-3 fatty acids</u> reduce inflammation, steatosis, and liver damage in NAFLD
- > MUFA may be useful
- > Fish oil improves circulating lipids and lipoproteins
- Fish Protein
 - Protein source important for steatosis (?)
- Vitamin D
 - Vitamin D concentrations have been shown to be associated with NAFLD

Fish protein and glucose metabolism

- Cod versus BPVEM
- 4 weeks isocaloric diets
- 19 en% protein
- ~60% of protein cod
- Equivalent amounts SFA/MUFA/PUFA

(Ouellet et al, Diabetes Care 2007)

Fish protein supplements improve glycemic control in overweight adults (Vikøren, British J Nutrition 2013)

Conclusion - Opportunities

High-protein diets can be considered in people with the <u>metabolic syndrome</u>

- supports weight loss and improves body composition
- Improve insulin action/glucose homeostasis
- *Reduces intrahepatic lipids*

> Need to know the consequences of (excess) protein

Fish protein could be a good quality protein

• More well-controlled human intervention studies needed

Acknowledgements

Prof Frans Kok Prof Daniel Tomé Prof Edith Feskens Jessica Schwarz Annemarie Rietman Monique van Nielen Nutrigenomics: Lydia Afman Nicole de Wit Prof Michael Muller Dietetics:

Els Siebelink

rganisatie

ALPRO FOUNDATION

